
How to write a module

ConTEXt meeting 2024
Wolfgang Schuster

What is a module?
Reusable code which is used by module document unlike environment files which are tied to
single documents.

⋄ Magazine style, e.g. MAPS.
⋄ Language specific settings, e.g. french or uppercase ß.
⋄ Abbreviations, e.g. PDF.
⋄ Missing functionality in ConTEXt, e.g. letters.

Modules are loaded with the \usemodule command:

\usemodule [...]1

OPT
[...,...]2 [..,..=..,..]3

OPT
1 m p s x t

2 FILE

3 KEY = VALUE

Example:

\usemodule[messenger]

Naming conventions
While modules can have simple names ending with tex it is recommended to add a prefix, it is
also possible to use other file extensions.

File prefix

⋄ m (core module)
⋄ p (private code)
⋄ s (style file)
⋄ x (XML code)
⋄ t (thid party)

File extension

⋄ mklx
⋄ mkxl
⋄ mkvi
⋄ mkiv
⋄ tex
⋄ cld
⋄ lua

Example: t-messenger.mkxl.

Documentation
ConTEXt provides a way to include documentation to code of a module which can be used to
create a formatted PDF output. To assist the process various comment variations are
provided which create different results in the converted documentation file.

%D Use this comment type for examples and explanations
%D of the module, keep in mind that each comment block
%D creates a local group when you change settings.

%M Use this comment type to load additional modules
%M (even the one you're documenting at the moment)
%M or make layout changes because unlike the previous
%M type settings are global.

%C Use this comment type for text which should remain
%C commented in the output, e.g. license information
%C (when you include the GNU GPL header).

%S B
%S This comment type is used when you add text which
%S should ignored/skipped. It is necessary to use "B"
%S at the first and "E" at the last line.
%S E

Preamble
Each file begins with a preamble which lists information about the file.

%D \module
%D [file=t-drofnats,
%D title=\CONTEXT\ user module,
%D subtitle=How to write a module,
%D version=2024.08.20,
%D author=R. J. Drofnats,
%D copyright=R. J. Drofnats,
%D license=Public Domain,
%D email=drofnats@sanserriffe]

Mandatory entries

⋄ title
⋄ subtitle
⋄ author

Optional entries

⋄ file
⋄ version
⋄ copyright
⋄ license
⋄ email

Preamble
Preamble – Output

To create a PDF from the module with formatted output of the documentation use module
extra. It is recommended to provide a filename for the resulting PDF file because the default is
context-extra.pdf.

context --extra=module --result=... <file>

CONTEXT

CONTEXT user module

How to write a module

R. J. Drofnats

August 13, 2024

How to write a module

t-drofnats CONTEXT CONTEXT user module 2

1 \unprotect

2 \protect \endinput

Cover Normal page

Info block
In addition to the preamble it is possible to an information block which gives a short
description about the module and its status.

% begin info
%
% title : <a short title to explain the module>
% comment : <a longer description which explains the purpose of the module>
% status : <current status of the module>
%
% end info

To see the result of these information blocks of all module use showmodules argument for the
context runner.

context --showmodules

Adding examples at the end
Besides using the documentation mechanism and creating a separate document to explain the
module it is posible to add code at the end of the file which is ignored when to module is loaded
with \usemodule.

With

\continueifinputfile {...}*

* FILE

where the argument takes the filename of the module you can put content after the barrier
which is processed when you pass the module itself as argument to the contextprocess, e.g.

context t-messenger.mkxl

Using special character
To ensure module can't be changed by users and to allow the multilingual interface ConTEXt
permits special characters for commands between \unprotect and \protect.

\unprotect
...
\protect

Between both commands you can use ?, !, @ and _ as part of command names, e.g.

\messenger_start
\????messenger
\c!location

The command handler
In the old MkII and early MkIV days all \define and \setup commands had to be written by
hand.

\def\definemessenger
{\dotripleempty\dodefinemessenger}

\def\dodefinemessenger[#1][#2][#3]%
{...}

\def\setupmessenger
{\dodoubleempty\dosetupmessenger}

\def\dosetupmessenger[#1][#2]%
{...}

To make the process to create these \define and \setup command easier ConTEXt added a
mechanism called the command handler.

Namespaces
When you change the values of a command or environment with a \setup command the value
has to be stored in a macro to be recalled later on.

The setting

\setupmessenger [signal] [width=10cm]

could in the old times achieved with

\getparameters [messenger] [width=10cm]

which result in the following internal representation:

\def\messengerwidth{10cm}

To ensure these internal macros are protected from user changes and to ensure names are
unique ConTEXt added a namespace mechanism.

Namespace setting
To create a namespace for a command/environment there are

\installcorenamespace {...}*

* NAME

for command of the ConTEXt core and

\installnamespace {...}*

* NAME

for third party modules. When you use the mechanism to create a new messenger namespace
with

\installnamespace {messenger}

you get the following command for usage of the later described mechanism

\????messenger

Namespace internals
As seen before a namespace uses 4 (or 2 for the core version) ? in front of the name but when
you expand the command results in something like

\2DD>

which can't be used in normal documents and ensures no users can modify the values.

When we replace the previous assignment with

\getparameters [\????messenger] [width=10cm]

we get now the following internal representation:

\def\2DD>width{3cm}

\installdefinehandler
The first step to create a new command/environment is a \define command.

\installdefinehandler \...1 {...}2 \...3

1 CSNAME

2 NAME

3 CSNAME

This handler creates

\defineCOMMAND [...] [...] [..=..]

which has two optional commands which can be used to

1. create a new instance and change the default values or
2. make a copy of an instance and change the default values.

The names of the instance or copy can be accessed with

\currentCOMMAND
\currentCOMMANDparent

and additional settings can be applied with

\everypresetCOMMAND
\everydefineCOMMAND

\define... example
We create a messenger environment and want different instances for different messengers.

\installdefinehandler \????messenger {messenger} \????messenger

Now we get a new \definemessenger command to create these instances.

1 2 3
\definemessenger [...] [...] [..,..=..,..]

OPT OPT

1 NAME
2 NAME
3 inherits: \setupmessenger

With the help of the \everydefinemessengerhook a custom environment is created when
you call \definemessenger.

\appendtoks
\setevalue{\e!start\curremessenger}{\messenger_start{\curremessenger}}%
\setevalue{\e!stop \curremessenger}{\messenger_stop }%

\to \everydefinemessenger

\installsetuphandler
The next step is a \setup command to set default values and change them.

\installsetuphandler \...1 {...}2

1 CSNAME

2 NAME

This handler creates

\setupCOMMAND [...] [..=..]

with one optional arguments which allows to change instance values.

In addition you get

\setupcurrentCOMMAND [..=..]

which is used to change value within a command/environment.

The name of the current instance can be assigned to

\currentCOMMAND

Additional settings can be applied with

\everysetupCOMMAND
\everysetupCOMMANDroot

\setup... example
We want to assign default values or change them you the messenger environment.

\installsetuphandler \????messenger {messenger}

Now we get a dedicated \setupmessenger command.

1 2
\setupmessenger [...,...] [..,..=..,..]

OPT

1 NAME
2 KEY = VALUE

with a local \setupcurrentmessenger command

*
\setupcurrentmessenger [..,..=..,..]

* KEY = VALUE

\installparameterhandler
The last step is to a provide a way to access the values of the \setup command.

\installparameterhandler \...1 {...}2

1 CSNAME

2 NAME

This handler creates

\currentCOMMAND
\COMMANDparameter {...}
\namedCOMMANDparameter {...} {...}
\detokenizedCOMMANDparameter {...}
\directCOMMANDparameter {...}
\letfromCOMMANDparameter \... {...}

\...parameter example
To finish it of we want to access the values for the messenger environment.

\installparameterhandler \????messenger {messenger}

We can now access the values with

*
\messengerparameter {...}

* KEY

or

1 2
\namedmessengerparameter {...} {...}

1 NAME
2 KEY

or

*
\directmessengerparameter {...}

* KEY

\installrootparameterhandler
In case you want the access the root values of a command we can create additional handles.

\installrootparameterhandler \...1 {...}2

1 CSNAME

2 NAME

This handler creates

\detokenizedrootCOMMANDparameter {...}
\rootCOMMANDparameter {...}

\root...parameter example
We can also access only the root values for messenger.

\installrootparameterhandler \????messenger {messenger}

This creates an additional parameter command.

*
\rootmessengerparameter {...}

* KEY

\installstyleandcolorhandler
After we established a way to create new command and environments, set their values and
access we still lack a way to apply different styles and colors.

\installstyleandcolorhandler \...1 {...}2

1 CSNAME

2 NAME

This handler creates

\COMMANDparameter {...}
\useCOMMANDstyleandcolor {...} {...}
\useCOMMANDstyleparameter {...}
\useCOMMANDcolorparameter {...}

\use...styleandcolor example
We can now access the style and color mechanism with messenger setups.

\installstyleandcolorhandler \????messenger {messenger}

The module can now apply the values with

1 2
\usemessengerstyleandcolor {...} {...}

1 KEY
2 KEY

or

*
\usemessengerstyleparameter {...}

* KEY

or

*
\usemessengercolorparameter {...}

* KEY

\installparametersethandler
In some cases you want to change the values of a single key.

\installparametersethandler \...1 {...}2

1 CSNAME

2 NAME

This handler creates

\currentCOMMAND
\setCOMMANDparameter {...} {...}
\setexpandedCOMMANDparameter {...} {...}
\letCOMMANDparameter {...} \...
\resetCOMMANDparameter {...}

\set...parameter example
We want a direct way to change messenger values.

\installparametersethandler \????messenger {messenger}

The module can now use

1 2
\setmessengerparameter {...} {...}

1 KEY
2 CONTENT

or

1 2
\letmessengerparameter {...} \...

1 KEY
2 CSNAME

or

*
\resetmessengerparameter {...}

* KEY

\installinheritedframed
Because \framed is a ConTEXt mechanism which used in many cases we want to way to use it
in our own commands.

\installinheritedframed {...}*

* NAME

This handler creates

\currentCOMMAND
\COMMANDparameter {...}
\COMMANDparameterhash {...}
\setupcurrentCOMMAND [..=..]
\inheritedCOMMANDframed {...}
\inheritedCOMMANDframedbox {...} ...

\inherited...framed example
We want a new \framed command which takes its values from \setupmessenger.

\installinheritedframed \????messenger {messenger}

The module can now use

*
\inheritedmessengerframed {...}

* CONTENT

which is \framedwith custom settings. To avoid clashes with other messenger settings the
namespace and command name should be different from the default one.

\installinheritedframed \????messengerframe {messengerframe}

\installbasicparameterhandler
To make the creation of a new command or environment easier ConTEXt combines multiple
handlers in a single \install..handler command.

The first one is

\installbasicparameterhandler \...1 {...}2

1 CSNAME

2 NAME

which combines all commands to access the values.

⋄ \installparameterhandler
⋄ \installparameterhashhandler
⋄ \installparametersethandler
⋄ \installrootparameterhandler

\installcommandhandler
The main handler used by most commands is

\installcommandhandler \...1 {...}2 \...3

1 CSNAME

2 NAME

3 CSNAME

which allows the creation of new commands, changing values and access to all values.

⋄ \installbasicparameterhandler
⋄ \installdefinehandler
⋄ \installsetuphandler
⋄ \installstyleandcolorhandler

\installsimplecommandhandler
For simpler commands without dedicated instaces one can use

\installsimplecommandhandler \...1 {...}2 \...3

1 CSNAME

2 NAME

3 CSNAME

which lacks the \definehandler.

⋄ \installbasicparameterhandler
⋄ \installsetuphandler
⋄ \installstyleandcolorhandler

\installframedcommandhandler
The last major handler is

\installframedcommandhandler \...1 {...}2 \...3

1 CSNAME

2 NAME

3 CSNAME

which combines \installcommandhandlerwith the \framedhandler.

⋄ \installcommandhandler
⋄ \installinheritedframed

Local variables
In some cases you want a mechanism to accept values as assignments which are local to the
command or environment. This can be done with the predefined \getdummyparameters.

\getdummyparameters [..,..=..,..]*

* KEY = VALUE

The values can be retrieved with

\dummyparameter {...}*

* KEY

\def\messagetext[#1]{#2}%
{\begingroup
\getdummyparameters[sender=,#1]%
\dummyparameter{sender}: #2%
\endgroup}

Example – Signal Messenger

Chat Group Chat

Example – Telegram Messenger

Chat Group Chat

