Hewlett-Packard Calculators

Bruce Horrocks | ConTeXt Meeting 2024

Warning...

... calculator collectors hold conferences as well

Florida, USA

London (in 2023 at POSK, the Polish Cultural Centre)

Allschwil, Switzerland

A selective history of Hewlett-Packard's electronic calculators

HP 9100A 1968

- discrete logic (no integrated circuits)
- range 10⁻⁹⁸ 10⁹⁸, 10-digits displayed, 12 internally
- programmable, RPN 3 level stack
- tour-de-force of technology for the day (that I won't be able to do justice to)

HP 9100A internals easily accessible

- resistor-diode logic
- bit-serial processor
- ROM provided by a 16-layer, inductively coupled circuit board
- RAM was magnetic core memory
- additionally, rope magnetic core ROM was used to expand 6-bit instructions to 29-bit microcode
- very fast for the day 1.21 MHz clock and could add/subtract two FP numbers in 2ms

HP 9100A inductively coupled ROM

- The HP 9100 contained 32K bits (512 64-bit words) of ROM program memory. The program ROM was built on a 16-layer printed circuit board and achieved a density of 1000 bits per square inch.
- Pulses were sent down two lines and were inductively coupled on a sense line. Signals from the two lines either reinforced or canceled each other producing a 1 or 0 on the sense line.
- 64 sense amplifier/latch circuits read the results and in turn drove the calculator's logic circuits

HP 9100A magnetic core memory

- read/written by sending small current through X & Y.
 At the intersection there is enough to set the polarity
- if setting the polarity causes a change then a current is induced in the sense wire
- planes connected to reduce no. of addressing circuits but then an inhibit line is needed

Indicates a connection to all planes.

HP 9100A James van Allen

Dr. Van Allen relied on an HP 9100A and its optional plotter to study the feasibility of using a gravity slingshot around Jupiter to allow Pioneer 11 to intercept Saturn. Pioneer 11 was retasked and arrived at Saturn before Voyager 1.

HP 35 1972

- shirt-pocket sized HP 9100
- "the bug" 2.02 ln e[×] → 2.0
- red dot

HP 34C 1979

- solve & integrate
- implement f(x) = 0 as a program then solve
- or y = f(x) and integrate

HP41C1979 - 1990

- 1st alpha-numeric
- plug-in modules
- huge range of peripherals

Peripherals

Landscape models

HP 12C 1981 - present day!

- Financial model
- RPN only
- at least 8 circuit board revisions over time as chip fab technology has moved on
- one of a range of landscape models

Scientific and computer scientist models as well...

Anaside RPN v Algebraic entry

- algebraic origins lost but it's what you are taught at school
- parentheses needed to ensure correct order
- (4+5)÷(6+7)=
- 12 keystrokes

- RPN Reverse Polish Notation invented by Jan Łukasiewicz
- operators follow arguments
- 4 enter 5 + 6 enter 7 + \div
- 9 keystrokes

The equals sign

Dowbeit, fozealie alteratio of equations. I will p20= pounde a fewe eräples, bicause the ertraction of their rootes, maie the more aptly bee wroughte. And to as uoide the tediouse repetition of these woozdes: is es qualle to: I will sette as I doe often in woozke ble, a paire of paralleles, o? Gemowe lines of onc lengthc, thus:=____, bicaule noe.2. thynges, can be moare equalle. And now marke these nombers.

"Because noe 2 thynges can be moare equalle." - The Whetstone of Witte, Robert Recorde, 1557

CAS and beyond RPN

HP's RPL language powered a long-running series of scientific graphing models

HP Prime 2013

- 32 MB RAM / 256 MB Flash (model G1)
 256 MB / 512 MB (model G2)
- primarily algebraic
- Home and CAS modes plus Apps
- exam mode
- Programmed using HP's own language cross between basic & Pascal
- Half-supports Python

Copies & clones

Victor V12 HP-12C clone

- Uses 2xAAA batteries so one set will last a lifetime (almost literally).
- The display is tilted up towards the user which makes it more easily read when flat on a desk.

SwissMicros.com have made an entire range of clones, both original and credit-card sized

	_
Swiss Fri 0	Micr 5/26/
T: Z: Y: X: FIX	sc
Σ- Σ+ Α	y^{x} 1/x
	% RCL
ALPH	IA
ENTI	ER
BST	
SST	BAS
	ASS
OFF EXIT ON	SET

Credit-card sized 15C

_	_			_	_			
'05 '20	16 2	2:17	AM			DI	M42 -⇔	
					0. 0. 3	00	00	
I	EN	1G [ALL	RI	2. DX.	71 71	.83 DX,	
								J
В	$\frac{x^2}{\sqrt{x}}$	2 C C	10 ^x LOG	D	e ^x LN	: J E	GTO XEQ	2 F
н	π R	↓ I	ASIN SIN	۱		os S K	ATAN	
	LAST x≷	гх у М	MODES	S N	DIS	P O		R
ver 7	Р	∫f(× 8	() Q	MA	trix 9	R	STAT	S
se 1	T	CONVI	ERT	FL/	ags 6	v (PROB	w
BIGN	x	CUST	ом Y	PGN	1.FCN 3	v Z	PRINT]
rup)]:	SНО	w	PR R	RGM	c ?	ATALO	G L

SwissMicros DM32 $2023-07-23\ 05:49$ \checkmark PRGM $\bigcirc 0\ 0\ 2\ X <> y$ $Q\ 0\ 2\ X <> y$ $\bigcirc 0\ 0\ 3\ X\ 2$ $Q\ 0\ 3\ X\ 2$ $\bigcirc 0\ 4\ +$ $Q\ 0\ 5\ R\ T\ N$
$x^{2} PARTS 10^{x} PROB LOG L.R. \xrightarrow{x \sqrt{y} \overline{x}, \overline{y}} x! S, 0 \overline{\Sigma} - SUMS$ $\sqrt{x} A e^{x} B LN c y^{x} D \frac{1/x}{1/x} E \overline{\Sigma} + F$ $CMPLXEQN RND SCRL HYP RA ASIN \pi ACOS% ATAN%CHG$ $STO_{G} RCL_{H} R + I SIN_{J} COS_{K} TAN_{L}$ $LASTx SHOW MEM x = MODES (DISP) CLEAR =$ $ENTER_{M} \overline{x + y}_{N} + \frac{1}{2} O E_{P} $
GTO FN= \bigvee SOLVE \land \bigwedge \int ISG DSE $x?y x?0$ XEQ 7_Q 8_R 9_S \div $\Rightarrow 0, r \Rightarrow y, x \Rightarrow HR \Rightarrow HMS \Rightarrow DEG \Rightarrow RAD BASE FLAGS$ 4_T 5_U 6_V \times $\Rightarrow kg \Rightarrow lb \Rightarrow c \Rightarrow c \Rightarrow c \Rightarrow c \Rightarrow in \Rightarrow l \Rightarrow gal$ 1_W 2_X 3_Y $-$ SETUP OFF INPUT VIEW FDISP /c PRGM PSE LBL RTN C_ON 0_Z e_i $R/S_{(i)}$ $+$ a b/c $SPACE$

DM42 – an HP-42S clone

DM32 – an HP-32Sii clone