
XML to PDF (via CLD)

Aditya Mahajan
15th ConTeXt meeting

24th Sep 2021

Wait! Why do you want to do that?

Wait! Why do you want to do that?

It did not start out this way. So, let me provide some background....

Wait! Why do you want to do that?

It did not start out this way. So, let me provide some background....
Started in academia 11 years ago.
Quickly realized that it is extremely important to have an up-to-date CV.

Funding agencies
award committees
yearly evaluations . . .

XML => CLD => PDF–(Aditya)

XML => CLD => PDF–(Aditya)

Different types of CV
Full Academic CV (20 to 50 pages)

Details of everything (and I mean everything) that you have done professionally
Presented in visually easy to parse format (tables, lots of tables)

Short CV (5 to 10 pages)
Important details and summary of professional activities.
Presented in a compact manner (bullet lists, lots of bullet lists)

XML => CLD => PDF–(Aditya)

Different types of CV
Full Academic CV (20 to 50 pages)

Details of everything (and I mean everything) that you have done professionally
Presented in visually easy to parse format (tables, lots of tables)

Short CV (5 to 10 pages)
Important details and summary of professional activities.
Presented in a compact manner (bullet lists, lots of bullet lists)

Everyone maintains multiple Word files, which doubles the work
I wanted to use a single TeX file. It’s easy with careful use of modes.

XML => CLD => PDF–(Aditya)

Different types of CV
Full Academic CV (20 to 50 pages)

Details of everything (and I mean everything) that you have done professionally
Presented in visually easy to parse format (tables, lots of tables)

Short CV (5 to 10 pages)
Important details and summary of professional activities.
Presented in a compact manner (bullet lists, lots of bullet lists)

Everyone maintains multiple Word files, which doubles the work
I wanted to use a single TeX file. It’s easy with careful use of modes.
Key-word driven user interface ...

\Grant[title={...},
 PIs={...},
 year={2011-2015},
 amount={year1, year2, ...},]

XML => CLD => PDF–(Aditya)
3

Example output

XML => CLD => PDF–(Aditya)
3

Example output
mode=full

Project Information Amount Personal Period

Fancy title of the grant, Funding agency, Applicant 1 (PI),
Applicant 2, and Applicant 3.

50,000 25,000 2018
50,000 25,000 2019
50,000 25,000 2020

Fancy title of 2nd grant, Funding agency, Applicant 1 (PI),
Applicant 2, and Applicant 3.

150,000 20,000 2020
150,000 20,000 2021
150,000 20,000 2022

.
.
.

Total 600,000 135,000

XML => CLD => PDF–(Aditya)
3

Example output
mode=full

Project Information Amount Personal Period

Fancy title of the grant, Funding agency, Applicant 1 (PI),
Applicant 2, and Applicant 3.

50,000 25,000 2018
50,000 25,000 2019
50,000 25,000 2020

Fancy title of 2nd grant, Funding agency, Applicant 1 (PI),
Applicant 2, and Applicant 3.

150,000 20,000 2020
150,000 20,000 2021
150,000 20,000 2022

.
.
.

Total 600,000 135,000

mode=short

• Fancy title of the grant, Funding agency, Applicant 1 (PI), Applicant 2,
and Applicant 3. $150,000 (2018–2020).

• Fancy title of 2nd grant, Funding agency, Applicant 1 (PI), Applicant 2,
and Applicant 3. $450,000 (2018–2020).

• . . .
• . . .
• . . .

XML => CLD => PDF–(Aditya)
3

Different types of CV (continued)
Funding agencies

Similar to short CV, but only list grants and pubs from the last 6 years.

XML => CLD => PDF–(Aditya)
3

Different types of CV (continued)
Funding agencies

Similar to short CV, but only list grants and pubs from the last 6 years.

Another funding agency . . .
. . . 5 years . . .

XML => CLD => PDF–(Aditya)
3

Different types of CV (continued)
Funding agencies

Similar to short CV, but only list grants and pubs from the last 6 years.

Another funding agency . . .
. . . 5 years . . .

I can still handle it with conditional processing . . .

XML => CLD => PDF–(Aditya)
3

Different types of CV (continued)
Funding agencies

Similar to short CV, but only list grants and pubs from the last 6 years.

Another funding agency . . .
. . . 5 years . . .

I can still handle it with conditional processing . . .

\ifnum\currentpaperparameter\c!year
 > \numexpr\currentyear - \interval\relax

\fi

. . . with key-value interface

\publication[title={....},
 authors={author1, author2, ...},
 journal={...}, ...]

XML => CLD => PDF–(Aditya)
4

Different types of CV (still continued . . .)
Yearly review

It will be nice if you include tables summarizing the grant record, publication record,
and supervision record.

XML => CLD => PDF–(Aditya)
4

Different types of CV (still continued . . .)
Yearly review

It will be nice if you include tables summarizing the grant record, publication record,
and supervision record.

This is just arithmetic and TeX is Turing complete, right?
Writing clean code in TeX is hard. So, moved all calculations to Lua.

XML => CLD => PDF–(Aditya)
4

Different types of CV (still continued . . .)
Yearly review

It will be nice if you include tables summarizing the grant record, publication record,
and supervision record.

This is just arithmetic and TeX is Turing complete, right?
Writing clean code in TeX is hard. So, moved all calculations to Lua.
But why not move the interface to Lua as well ...

local publications = {
 { ["title"] = {....},
 ["authors"] = { "author1", "author2", "author3" },
 ["journal"] = {...},
 },
 { ... },
}

XML => CLD => PDF–(Aditya)
5

Different types of CV (there is more!!)
Grant review

In the list of publications, add an asterix next to the student working under your
supervision...

XML => CLD => PDF–(Aditya)
5

Different types of CV (there is more!!)
Grant review

In the list of publications, add an asterix next to the student working under your
supervision...

This is now more of an interface design question.

local publications = {
 { ["title"] = {....},
 ["authors"] = {
 { ["name"] = "author1", ["status"] = "supervised" },
 { ["name"] = "...", ["status"] = ",,," },
 },
 },
 { ... },
}

Finally, had a system that
met all the requirements.

Finally, had a system that
met all the requirements.

But data entry was error prone . . .
Forgot quotes around keys or values, forget to add a key, etc.

Finally, had a system that
met all the requirements.

But data entry was error prone . . .
Forgot quotes around keys or values, forget to add a key, etc.
Started thinking about writing a validate function in Lua . . .
. . . but realized that this is a solved problem in XML.
Write a schema in RNG and verify using jing (or other tools).

XML => CLD => PDF–(Aditya)
4

Adding XML to the mix
ConTeXt XML mode was being rewamped around this time.
Filtering based on LPATH or CSS selectors . . .
. . . but I could’t wrap by head around it.

XML => CLD => PDF–(Aditya)
4

Adding XML to the mix
ConTeXt XML mode was being rewamped around this time.
Filtering based on LPATH or CSS selectors . . .
. . . but I could’t wrap by head around it.

I already had a working system for going from LUA to PDF . . . so all I
needed to do was convert XML-tree to LUA table.
lmxl.loadfile(...) family of functions already do that . . .
. . . I just need to do some data munging.

Time for some reverse engineering

XML => CLD => PDF–(Aditya)
7

Simple experiment

XML => CLD => PDF–(Aditya)
7

Simple experiment

local example = [==[
<?xml version="1.0" encoding="UTF-8" ?>
<publication-list>
 <journal-list>
 <publication>
 Paper 1
 </publication>
 </journal-list>
</publication-list>
]==]

local xml_data = lxml.loaddata("publications", example)

XML => CLD => PDF–(Aditya)
7

Simple experiment

local example = [==[
<?xml version="1.0" encoding="UTF-8" ?>
<publication-list>
 <journal-list>
 <publication>
 Paper 1
 </publication>
 </journal-list>
</publication-list>
]==]

local xml_data = lxml.loaddata("publications", example)

t={
 ["at"]={},
 ["dt"]={
 {
 ["dt"]={ "xml
version=\"1.0\" encoding=\"UTF-8\"
" },
 ["ns"]="",
 ["special"]=true,
 ["tg"]="@pi@",
 },
 "\
",
 {
 ["at"]={},
 ["dt"]={
 "\

 ",
 {
 ["at"]={},
 ["dt"]={
 "\
 ",
 {
 ["at"]={},
 ["dt"]={ "\
 Paper 1\
 " },
 ["ni"]=2,
 ["ns"]="",
 ["rn"]="",
 ["tg"]="publication",
 },
 "\

 ",
 },
 ["ni"]=2,
 ["ns"]="",
 ["rn"]="",
 ["tg"]="journal-list",
 },
 "\
",
 },
 ["ni"]=3,
 ["ns"]="",
 ["rn"]="",
 ["tg"]="publication-list",
 },
 },

XML => CLD => PDF–(Aditya)
9

Filtering . . .

XML => CLD => PDF–(Aditya)
9

Filtering . . .

local example = [==[
<?xml version="1.0" encoding="UTF-8" ?>
<publication-list>
 <journal-list>
 <publication>
 <title>Paper 1</title>
 </publication>
 </journal-list>
 <conference-list>
 <!-- -->
 </conference-list>
</publication-list>
]==]

local xml_data = lxml.loaddata("publications", example)
local journal_data = lxml.filter(xml_data, "journal-list/publication")

XML => CLD => PDF–(Aditya)
9

Filtering . . .

local example = [==[
<?xml version="1.0" encoding="UTF-8" ?>
<publication-list>
 <journal-list>
 <publication>
 <title>Paper 1</title>
 </publication>
 </journal-list>
 <conference-list>
 <!-- -->
 </conference-list>
</publication-list>
]==]

local xml_data = lxml.loaddata("publications", example)
local journal_data = lxml.filter(xml_data, "journal-list/publication")

t={
 {
 ["at"]={},
 ["dt"]={
 "\
 ",
 {
 ["at"]={},
 ["dt"]={ "Paper 1" },
 ["ei"]=1,

 ["en"]=0,
 ["ni"]=2,
 ["ns"]="",
 ["rn"]="",
 ["tg"]="title",
 },
 "\
 ",
 },
 ["ei"]=1,

 ["en"]=1,
 ["mi"]=1,
 ["ni"]=2,
 ["ns"]="",
 ["rn"]="",
 ["tg"]="publication",
 },
}

XML => CLD => PDF–(Aditya)
11

Attributes . . .

XML => CLD => PDF–(Aditya)
11

Attributes . . .

local example = [==[
<?xml version="1.0" encoding="UTF-8" ?>
<publication-list>
 <journal-list>
 <publication status="submitted">
 <title>Paper 1</title>
 </publication>
 <publication status="appeared">
 <title>Paper 2</title>
 </publication>
 </journal-list>
</publication-list>
]==]

local xml_data = lxml.loaddata("publications", example)
local journal_data = lxml.filter(xml_data, "journal-list/publication")

XML => CLD => PDF–(Aditya)
11

Attributes . . .

local example = [==[
<?xml version="1.0" encoding="UTF-8" ?>
<publication-list>
 <journal-list>
 <publication status="submitted">
 <title>Paper 1</title>
 </publication>
 <publication status="appeared">
 <title>Paper 2</title>
 </publication>
 </journal-list>
</publication-list>
]==]

local xml_data = lxml.loaddata("publications", example)
local journal_data = lxml.filter(xml_data, "journal-list/publication")

t={
 {
 ["at"]={
 ["status"]="submitted",
 },
 ["dt"]={
 "\
 ",
 {
 ["at"]={},
 ["dt"]={ "Paper 1" },
 ["ei"]=1,
 ["en"]=0,
 ["ni"]=2,
 ["ns"]="",
 ["rn"]="",

 ["tg"]="title",
 },
 "\
 ",
 },
 ["ei"]=1,
 ["en"]=1,
 ["mi"]=1,
 ["ni"]=2,
 ["ns"]="",
 ["rn"]="",
 ["tg"]="publication",
 },
 {
 ["at"]={
 ["status"]="appeared",

 },
 ["dt"]={
 "\
 ",
 {
 ["at"]={},
 ["dt"]={ "Paper 2" },
 ["ei"]=1,
 ["en"]=0,
 ["ni"]=2,
 ["ns"]="",
 ["rn"]="",
 ["tg"]="title",
 },
 "\
 ",

XML => CLD => PDF–(Aditya)
11

Load the XML file

local xml_pubs_list = lxml.load("publications", "publications.xml")

The main idea

XML => CLD => PDF–(Aditya)
11

Load the XML file

local xml_pubs_list = lxml.load("publications", "publications.xml")

Filter the appropriate list

local xml_journals = lxml.filter(xml_pubs_list, "journal-list/publication")

The main idea

XML => CLD => PDF–(Aditya)
11

Load the XML file

local xml_pubs_list = lxml.load("publications", "publications.xml")

Filter the appropriate list

local xml_journals = lxml.filter(xml_pubs_list, "journal-list/publication")

Munge data

local lua_journals = munge_publications(xml_journals)

The main idea

XML => CLD => PDF–(Aditya)
11

Load the XML file

local xml_pubs_list = lxml.load("publications", "publications.xml")

Filter the appropriate list

local xml_journals = lxml.filter(xml_pubs_list, "journal-list/publication")

Munge data

local lua_journals = munge_publications(xml_journals)

Process data using old CLD code

typeset_journals(lua_journals)

The main idea

XML => CLD => PDF–(Aditya)
12

local munge_publications = function (xml_pubs)
 local lua_pubs = {}

 for i = 1, #xml_pubs do
 local xml_current_pub = xml_pubs[i]
 local lua_current_pub = { }

 lua_current_pub.status = xml_current_pub.at.status
 lua_current_pub.title = cv.extract(xml_current_pub, "title")
 lua_current_pub.authors = pubs_extract_authors(xml_current_pub, "authors")
 lua_current_pub.journal = cv.extract(xml_current_pub, "journal")
 ...
 lua_pubs[i] = lua_current_pub
 end

 return lua_pubs
end

Example of data munging

XML => CLD => PDF–(Aditya)
12

local munge_publications = function (xml_pubs)
 local lua_pubs = {}

 for i = 1, #xml_pubs do
 local xml_current_pub = xml_pubs[i]
 local lua_current_pub = { }

 lua_current_pub.status = xml_current_pub.at.status
 lua_current_pub.title = cv.extract(xml_current_pub, "title")
 lua_current_pub.authors = pubs_extract_authors(xml_current_pub, "authors")
 lua_current_pub.journal = cv.extract(xml_current_pub, "journal")
 ...
 lua_pubs[i] = lua_current_pub
 end

 return lua_pubs
end

Example of data munging

function cv.extract(data, field)
 local extracted_field = lxml.filter(data, field)

 if extracted_field ~= nil then
 return string.trim(extracted_field[1].dt[1])
 end
end

So, what does the output look like

XML => CLD => PDF–(Aditya)
13

Conclusion
Further automation

Use ConTeXt to generate list-of-publication etc on my webpage.

Use inotify-based watchers to automatically compile different versions of the CV and
my webpage whenever an XML file is changed.
Have been running this setup for almost 10 years. Works flawlessless.

XML => CLD => PDF–(Aditya)
13

Conclusion
Further automation

Use ConTeXt to generate list-of-publication etc on my webpage.

Use inotify-based watchers to automatically compile different versions of the CV and
my webpage whenever an XML file is changed.
Have been running this setup for almost 10 years. Works flawlessless.

Complexity
Less than 3000 lines of clean Lua code.

XML => CLD => PDF–(Aditya)
13

Conclusion
Further automation

Use ConTeXt to generate list-of-publication etc on my webpage.

Use inotify-based watchers to automatically compile different versions of the CV and
my webpage whenever an XML file is changed.
Have been running this setup for almost 10 years. Works flawlessless.

Complexity
Less than 3000 lines of clean Lua code.

XML => CLD => PDF–(Aditya)
13

Conclusion
Further automation

Use ConTeXt to generate list-of-publication etc on my webpage.

Use inotify-based watchers to automatically compile different versions of the CV and
my webpage whenever an XML file is changed.
Have been running this setup for almost 10 years. Works flawlessless.

Complexity
Less than 3000 lines of clean Lua code.

But . . .
The funding agencies decided to come up an online system for creating CV.
You enter all the information in a web-based system and it generates an appropriately
formatted CV for you.
Must include a "common CV" when submitting grants. It is UGLY!!!

