XML to PDF (via CLD)

Aditya Mahajan

15th ConTeXt meeting
24th Sep 2021

Wait! Why do you want to do that?

Wait! Why do you want to do that?

P> It did not start out this way. So, let me provide some background....

Wait! Why do you want to do that?

P> It did not start out this way. So, let me provide some background....

P> Started in academia 11 years ago.

D> Quickly realized that it is extremely important to have an up-to-date CV.
P> Funding agencies
P award committees
D> yearly evaluations ...

" Please send
your up-to-date

maffip.com

XML => CLD => PDF—(Aditya)

cV. ; = That's easy, right?
-

d 5§

1

Different types of CV

Full Academic CV (20 to 50 pages)
> Details of everything (and I mean everything) that you have done professionally
> Presented in visually easy to parse format (tables, lots of tables)

Short CV (5 to 10 pages)
P> Important details and summary of professional activities.
> Presented in a compact manner (bullet lists, lots of bullet lists)

XML => CLD => PDF—(Aditya)

Different types of CV

Full Academic CV (20 to 50 pages)
I> Details of everything (and I mean everything) that you have done professionally
P Presented in visually easy to parse format (tables, lots of tables)

Short CV (5 to 10 pages)
> Important details and summary of professional activities.
P> Presented in a compact manner (bullet lists, lots of bullet lists)

> Everyone maintains multiple Word files, which doubles the work
P> I wanted to use a single TeX file. It’s easy with careful use of modes.

XML => CLD => PDF—(Aditya)

Different types of CV

Full Academic CV (20 to 50 pages)

P> Details of everything (and I mean everything) that you have done professionally
D> Presented in visually easy to parse format (tables, lots of tables)

Short CV (5 to 10 pages)

B> Important details and summary of professional activities.
D> Presented in a compact manner (bullet lists, lots of bullet lists)

P> Everyone maintains multiple Word files, which doubles the work
. &> I wanted to use a single TeX file. It’s easy with careful use of modes.
P> Key-word driven user interface ...

2?'\Grant[title={...},

R/ PIs={...},
year={2011-2015},
amount={yearl, year2, ...},]

XML => CLD => PDF—(Aditya)

Example output

XML => CLD => PDF—(Aditya)

Example output

e Pl

Applicant 2, and Applicant 3.

Project Information Amount Personal Period

Fancy title of the grant, Funding agency, Applicant 1 (PI), 50,000 25,000

50,000 25,000
50,000 25,000

1

2018
2019
2020

Applicant 2, and Applicant 3.

Fancy title of 2nd grant, Funding agency, Applicant 1 (PI), 150,000 20,000

150,000 20,000
150,000 20,000

2020
2021
2022

Total 600,000 135,000

XML => CLD => PDF—(Aditya)

Example output

mode=short

Fancy title of the grant, Funding agency, Applicant 1 (PI), Applicant 2,
and Applicant 3. $150,000 (2018-2020).

Fancy title of 2nd grant, Funding agency, Applicant 1 (PI), Applicant 2,
and Applicant 3. $450,000 (2018-2020).

Different types of CV (continued)

Funding agencies
P> Similar to short CV, but only list grants and pubs from the last 6 years.

XML => CLD => PDF—(Aditya)

Different types of CV (continued)

Funding agencies
P> Similar to short CV, but only list grants and pubs from the last 6 years.

Another funding agency ...
D ... b5 years ...

XML => CLD => PDF—(Aditya)

Different types of CV (continued)

Funding agencies
> Similar to short CV, but only list grants and pubs from the last 6 years.

Another funding agency ...
P ... byears ...

P> I can still handle it with conditional processing . ..

XML => CLD => PDF—(Aditya)

Different types of CV (continued)
Funding agencies

P> Similar to short CV, but only list grants and pubs from the last 6 years

Another funding agency ...
P> ... b5years ...

B> I can still handle it with conditional processing ...

\ifnum\currentpaperparameter\c!year

> \numexpr\currentyear - \intervall\relax

7 \ei
>

. with key-value interface

\publication[title={....},

authors={authorl, author2, ...},
journal={...}, ...]

XML => CLD => PDF—(Aditya)

Different types of CV (still continued ...)

Yearly review
D> It will be nice if you include tables summarizing the grant record, publication record,
and supervision record.

XML => CLD => PDF—(Aditya)

Different types of CV (still continued ...)

Yearly review
P> It will be nice if you include tables summarizing the grant record, publication record,
and supervision record.

> This is just arithmetic and TeX is Turing complete, right?
D> Writing clean code in TeX is hard. So, moved all calculations to Lua.

XML => CLD => PDF—(Aditya)

Different types of CV (still continued ...)

Yearly review

B> It will be nice if you include tables summarizing the grant record, publication record,
and supervision record.

> This is just arithmetic and TeX is Turing complete, right?
D> Writing clean code in TeX is hard. So, moved all calculations to Lua.
> But why not move the interface to Lua as well ...

S W) 1o0cal publications = {
{ ["title"] = {....},
["authors"] = { "authorl", "author2", "author3" 1},
["journal"] = {...},
1,
{ ... 3},

XML => CLD => PDF—(Aditya)

Different types of CV (there is more!!)

Grant review
P> In the list of publications, add an asterix next to the student working under your
supervision...

XML => CLD => PDF—(Aditya)

Different types of CV (there is more!!)

Grant review
D> In the list of publications, add an asterix next to the student working under your
supervision...

> This is now more of an interface design question.

local publications = {
{ ["title"] = {....},
["authors"] = {
{ ["name"] = "authorl", ["status"] = "supervised" 1},
{ [llnamell] = ll. . .ll’ ["StatllS"] = Il”,ll }’

XML => CLD => PDF—(Aditya)

Finally, had a system that

met all the requirements.

Finally, had a system that

met all the requirements.

P> But data entry was error prone ...
> Forgot quotes around keys or values, forget to add a key, etc.

Finally, had a system that
met all the requirements.

But data entry was error prone ...

Forgot quotes around keys or values, forget to add a key, etc.
Started thinking about writing a validate function in Lua ...
... but realized that this is a solved problem in XML.

Write a schema in RNG and verify using jing (or other tools).

Adding XML to the mix

P> ConTeXt XML mode was being rewamped around this time.
> Filtering based on LPATH or CSS selectors . ..
... but I could’t wrap by head around it.

XML => CLD => PDF—(Aditya)

Adding XML to the mix

> ConTeXt XML mode was being rewamped around this time.
P> Filtering based on LPATH or CSS selectors ...
... but I could’t wrap by head around it.

I already had a working system for going from LUA to PDF ... so alll
needed to do was convert XML-tree to LUA table.

1mx1.loadfile(...) family of functions already do that ...

... I just need to do some data munging.

\

XML => CLD => PDF—(Aditya)

Time for some reverse engineering

Simple experiment

XML => CLD => PDF—(Aditya)

Simple experiment

local example = [==
<?xml version="1.0" encoding="UTF-8" 7>
<publication-list>
<journal-list>
<publication>
Paper 1
</publication>
</journal-list>
</publication-list>
1==

local xml_data = lxml.loaddata("publications", example)

XML => CLD => PDF—(Aditya)

Simple experiment

t={
["at"]={},

s
["dt"]={ [llatll]={}’ ["Ili"]=2,
{

["dt"]1={ ["ns"]="",
["dt"]={ "xml "\ ["rn"]="",
version=\"1.0\" encoding=\"UTF-8\" ", ["tg"]="journal-list",
DTy { },
[*ns"]="", ["at"]={}, "\
["special"]=true, ["at"]={ "\
["tg"]="@piq", Paper 1\ 1,
}, D Ty ["ni"]=3,
"\ ["ni"]=2, ["ns"]="",
["ns"]="", ["rn"]="",
["rn"]="", ["tg"]="publication-list}",
["tg"]="publication", T,
1,

["at"]={},
I:Ildtll]={ }’
AN AN

Filtering ...

XML => CLD => PDF—(Aditya)

Filtering ...

local example = [==
<?xml version="1.0" encoding="UTF-8" 7>
<publication-list>
<journal-list>
<publication>
<title>Paper 1</title>
</publication>
</journal-list>
<conference-list>
<l-= ==>
</conference-list>
</publication-list>
1==

local xml_data = 1lxml.loaddata("publications", example)
local journal_data = lxml.filter(xml_data, "journal-list/publication")

XML => CLD => PDF—(Aditya)

Filtering ...

t={

{

["at"] ={} s

["dt"]={
n\

"
3

{
["at"]={},

I:lldtll]={ IIPaper 1|I }’

["ei"]=1,

["en"]=0, ["en"]=1,
["ni"]=2, ["mi"]=1,
['ns"]="", ['nit1=2,
W00, ["ns"]="",
["tg"]l="title", ["rn"]="",
T, ["tg"]="publication",
"\ },
}
},
["ei"]=1,

N

Attributes ...

XML => CLD => PDF—(Aditya)

Attributes ...

local example = [==
<?xml version="1.0" encoding="UTF-8" 7>
<publication-list>
<journal-list>
<publication status="submitted">
<title>Paper 1</title>
</publication>
<publication status="appeared">
<title>Paper 2</title>
</publication>
</journal-list>
</publication-list>
1==

local xml_data = 1lxml.loaddata("publications", example)
local journal_data = lxml.filter(xml_data, "journal-list/publication")

XML => CLD => PDF—(Aditya)

Attributes ...

t { [Iltgll]=lltitlell, }

{ }, ["dt"]={
["at"]={ ||\ u\
["status"]="submitted", D 0
}, }, {

[lldtll]:{ [lleill]=1, ["at"]={}’

" ["en"]=1, ["dt"]={ "Paper 2" },

["mi"]=1, [Mei"]=1,

{ ["Ili"]=2, [nenn]=o’

b

["at"]={}, ["ns"]="", ["Ili":|=2,
["dt"]={ "Paper 1" }, [urnn]:nn, ["IlS"]="",
["ei"]=1, ["tg"]="publication", ["I‘l’l"]="",

I:nenn]=0, }, ["tg"]="tit1e",
["ni"]=2, { }:
["ns"]="", [Ilatll]={ n\

I:Ilrnll]=ll " s ["StatUS"]="appeared",

The main idea
Load the XML file

local xml_pubs_list =

1xml.load("publications", "publications.xml")

XML => CLD => PDF—(Aditya)

The main idea
Load the XML file

local xml_pubs_list = lxml.load("publications", "publications.xml")

Filter the appropriate list

local xml_journals = lxml.filter(xml_pubs_list, "journal-list/publication")

XML => CLD => PDF—(Aditya)

The main idea
Load the XML file

local xml_pubs_list = lxml.load("publications", "publications.xml")

Filter the appropriate list

local xml_journals = lxml.filter(xml_pubs_list, "journal-list/publication")

Munge data

local lua_journals = munge_publications(xml_journals)

XML => CLD => PDF—(Aditya)

The main idea
Load the XML file

local xml_pubs_list = lxml.load("publications", "publications.xml")

Filter the appropriate list

local xml_journals = lxml.filter(xml_pubs_list, "journal-list/publication")

Munge data

local lua_journals = munge_publications(xml_journals)

Process data using old CLD code

typeset_journals(lua_journals)

XML => CLD => PDF—(Aditya)

Example of data munging

local munge_publications = function (xml_pubs)
local lua_pubs = {}

for i = 1, #xml_pubs do
local xml_current_pub = xml_pubs[i]
local lua_current_pub = { }

lua_current_pub.status = xml_current_pub.at.status

lua_current_pub.title = cv.extract(xml_current_pub, "title")
lua_current_pub.authors pubs_extract_authors(xml_current_pub, "authors")
lua_current_pub. journal cv.extract(xml_current_pub, "journal")

lua_pubs[i] = lua_current_pub
end

return lua_pubs
end

Example of data munging

function cv.extract(data, field)
local extracted _field = 1lxml.filter(data, field)

if extracted_field ~= nil then
return string.trim(extracted_field[1].dt[1])
end
end

So, what does the output look like

Conclusion

Further automation
> Use ConTeXt to generate list-of-publication etc on my webpage.

> Use inotify-based watchers to automatically compile different versions of the CV and
my webpage whenever an XML file is changed.
P> Have been running this setup for almost 10 years. Works flawlessless.

XML => CLD => PDF—(Aditya)

Conclusion

Further automation
P> Use ConTeXt to generate list-of-publication etc on my webpage.

P> Use inotify-based watchers to automatically compile different versions of the CV and
my webpage whenever an XML file is changed.
P> Have been running this setup for almost 10 years. Works flawlessless.

Complexity
P> Less than 3000 lines of clean Lua code.

XML => CLD => PDF—(Aditya)

Conclusion

HOW LONG CAN YOU \WORK ON MAKING A ROUTINE TASK MORE

EFFCIENT BEFORE YOURE SPENDING MORE TME THAN YOU SAVE?
(RCROSS FIVE YERRS)

XML => CLD =>

—— HOWOFTEN YOO DOTHE TROK —
0/ Shay DALY WEEKY MONFLY YEPRLY

2Hours Hmstﬁts m‘dnts mitum

2 HOWRS mu2urlr55 nm?ms

12 HouRS | 2 Hours Hr?u@ﬁ

H Hours | 1 HouR

5 HOURS

Conclusion

Further automation
P> Use ConTeXt to generate list-of-publication etc on my webpage.

> Use inotify-based watchers to automatically compile different versions of the CV and
my webpage whenever an XML file is changed.
D> Have been running this setup for almost 10 years. Works flawlessless.

Complexity
P> Less than 3000 lines of clean Lua code.

But ...
P> The funding agencies decided to come up an online system for creating CV.
P> You enter all the information in a web-based system and it generates an appropriately
formatted CV for you.
P> Must include a "common CV" when submitting grants. It is UGLY!!!

XML => CLD => PDF—(Aditya)

