

Generative Typesetting

John Haltiwanger
Libre Graphics Meeting 2011

Generative typesetting is a name for a
relatively old-fashioned process that has
been reimplemented using modern tools.

Utilizes _visually semantic_ markup and a
translation layer without any preconceptions.

And then there was TeX...

1978

Electronic typesetting systems and cold-
press publishing machines have largely
replaced the older methods of printing, but
they had not necessarily succeeded in
producing the same level of quality.

Meanwhile, semantics...

1980

Brian Reid develops a system called Scribe which
concerns itself with representing the semantic structure of
a document. This allows the computer to understand when
a title is a title, a section is a section, etc.

@Heading(Genesis)

@Begin(Quotation)

 And then there were quotes, of
indetermininate style...

@End(Quotation)

 LaTeX = TeX * Scribe

Early 1980s

Leslie Lamport develops LaTeX at SRI
International. Over the course of the decade it
becomes a de facto standard for journal publication
in mathematic and scientific fields.

\title{Semantics what?!}

\begin{document}

 Set in style...

 Right?

\end{document}

The Reign of the <>

From Scribe we see a steady evolution of
semantic markup into SGML then to HTML and
finally XML.

But as the systems get more general and
computable, they get less and less easy for a
human to parse.

Enter Markdown

2000s

John Gruber and Aaron Swartz develop Markdown,
one of the first pre-formats. Enabled by the glory of
Perl Regular Expressions.

Based on the conventions that arose over decades of
e-mail, Markdown implements a _visually semantic_
markup.

Followed by many other options.

Flexible Options

A new approach is necessary.

Why?

Because typographic workflows are infinitely
variable. This is one reason why generative
approaches like LaTeX fade away when the
output is not an article with standardized, preset
style.

Mind the Subtext

A mutable translation layer.

Bolt your own front-ends and backends (styles
and effects).

Input files not only gain access to multiple output
formats, their agency now includes an infinite
variety of styles.

Subtext Architecture

Styles and Effects configurations are Lua tables (or
can be mapped to tables from a more generic
syntax, perhaps looking something like CSS).

Context (ConTeXt) as the primary PDF backend.

But your effects can be anything.

Preliminary Syntax

style{“header”,

 start = “#”,

 stop = “#”,

 inline = “no”}

effect{“header”,

 format = “context”,

 setup = “\setuphead[subject][style={\switchtobodyfont[16pt,sc]”,

 start = '\subject{',

 stop = '}' }

effect{“header”,

 format = “html”,

 setup = “<style type='text/css'>h1.smallcaps{ font-variant: small-
caps; }</style>”,

 start = “<h1 class='smallcaps'>”,

 stop = “</h1>” }

Advantages

Customizability means future-proofing and
workflow-consolidation.

Separation of style and effect means that
documents can be re-set without changing their
structure.

No programming (outside of Context, HTML,
XML, etc).

Further

Email : john.haltiwanger@gmail.com

Website : http://drippingdigital.com/blog

Twitter : @jceasless

Identi.ca : @ab5tract

IRC : ab5tract@freenode

mailto:john.haltiwanger@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

