XITS Math

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k).$$

Theorem 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

 $\max \left\{ |f(z)| \, : \, z \in G^{-} \right\} = \max \left\{ |f(z)| \, : \, z \in \partial G \right\}.$

Asana Math

Theorem 1 (Residue Theorem). Let *f* be analytic in the region *G* except for the isolated singularities $a_1, a_2, ..., a_m$. If γ is a closed rectifiable curve in *G* which does not pass through any of the points a_k and if $\gamma \approx 0$ in *G* then

$$\frac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^m n(\gamma;a_k)\operatorname{Res}(f;a_k).$$

Theorem 2 (Maximum Modulus). Let *G* be a bounded open set in \mathbb{C} and suppose that *f* is a continuous function on *G*⁻ which is analytic in *G*. Then

 $\max\left\{|f(z)|: z \in G^{-}\right\} = \max\left\{|f(z)|: z \in \partial G\right\}.$

Cambria Math

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities $a_1, a_2, ..., a_m$. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i}\int_{\gamma} f = \sum_{k=1}^{m} n(\gamma; a_k) \operatorname{Res}(f; a_k).$$

Theorem 2 (Maximum Modulus). Let *G* be a bounded open set in \mathbb{C} and suppose that *f* is a continuous function on G^- which is analytic in *G*. Then

 $\max\{|f(z)|: z \in G^-\} = \max\{|f(z)|: z \in \partial G\}.$

Lucida Math

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^m n(\gamma;a_k)\operatorname{Res}(f;a_k).$$

Theorem 2 (Maximum Modulus). *L*et *G* be a bounded open set in \mathbb{C} and suppose that *f* is a continuous function on G^- which is analytic in *G*. Then

 $\max\left\{|f(z)|: z \in G^{-}\right\} = \max\left\{|f(z)|: z \in \partial G\right\}.$

Lucida Math (+ss01)

Theorem 1 (Residue Theorem). Let *f* be analytic in the region *G* except for the isolated singularities $a_1, a_2, ..., a_m$. If γ is a closed rectifiable curve in *G* which does not pass through any of the points a_k and if $\gamma \approx 0$ in *G* then

$$\frac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^m n(\gamma;a_k)\operatorname{Res}(f;a_k).$$

Theorem 2 (Maximum Modulus). *L*et *G* be a bounded open set in \mathbb{C} and suppose that *f* is a continuous function on *G*⁻ which is analytic in *G*. Then

$$\max\left\{|f(z)|: z \in G^{-}\right\} = \max\left\{|f(z)|: z \in \partial G\right\}.$$

Latin Modern Math

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities a_1, a_2, \ldots, a_m . If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^m n(\gamma;a_k)\operatorname{Res}(f;a_k).$$

Theorem 2 (Maximum Modulus). Let G be a bounded open set in \mathbb{C} and suppose that f is a continuous function on G^- which is analytic in G. Then

 $\max\left\{|f(z)|:z\in G^-\right\}=\max\left\{|f(z)|:z\in\partial G\right\}.$

Neo Euler

Theorem 1 (Residue Theorem). Let f be analytic in the region G except for the isolated singularities $a_1, a_2, ..., a_m$. If γ is a closed rectifiable curve in G which does not pass through any of the points a_k and if $\gamma \approx 0$ in G then

$$\frac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^mn(\gamma;a_k)\operatorname{Res}(f;a_k).$$

Theorem 2 (Maximum Modulus). Let G be a bounded open set in C and suppose that f is a continuous function on G^- which is analytic in G. Then

 $\max\{|f(z)|: z \in G^-\} = \max\{|f(z)|: z \in \partial G\}.$