
MetaPost for Beginners

Hartmut Henkel, Oftersheim, Germany
N 49◦22.275′ E 008◦35.553′

2nd, 2008, Bohinj
N xx◦xx .xx ′ W xx◦xx .xx ′

August 2008

Introduction
What is MetaPost?

MetaPost — a picture drawing language and compiler with vector
output.

What is MetaPost good for?

I Production of scientific and technical drawings.

I Results of highest typographic standards (not automatically,
but. . .)

I Works perfectly together with LATEX, TEX, and friends.

I Powerful macro language, extensible.

I Fun, even MetaFun :-)

Introduction
What is MetaPost?

This is not MetaPost (from an exam). . .

Introduction
What is MetaPost?

. . . , but this is:

4 cm

3
cmx

Shouldn’t x be rotated? Graphics design questions. . .

Introduction
Tutorial Overview

Tutorial of ≈ 90 minutes:

I Introduction

I Workflow

I Showstoppers for beginners

I Basic concepts

I Macros

I Text inclusion

I Examples

Introduction
History

A short history of MetaPost:

I 1984: METAFONT Version 0 by D. E. Knuth

I 1990: MetaPost by John D. Hobby, based on METAFONT
Version 1.9, Copyright 1990 – 1995 by AT&T Bell
Laboratories.

I 1995: MetaPost Version 0.63

I Version 0.641 for long time,
bugs accumulating

Major overhaul by Taco Hoekwater,
pending bugs removed, functionality extended.

I Now (July 2007): Version 1.000

I Active development; next: Linkable MetaPost library. . .

Introduction
MetaPost vs. METAFONT

How is MetaPost related to METAFONT?

METAFONT MetaPost
Raster output (GF = Generic Font) Vector output (PostScript)

***** ******
*** *****

***** ******
******* ******
******** ******
******** ******
******** ******
******** ******
****** ******
**** ******

********* ******
******* ******

******* ******
******** ******
******* ******
******** ******

******** ******
******* ******
******* ****** **
******* ****** **
******* ****** **
******* ****** **
******* ******* **
******* ******* **
******** ******** **
******* *** ***** **
******** ** ***** **
******** **** ***** **

******* **** *********
************** *******

******** *****

Introduction
MetaPost info where?

I “A User’s Manual for MetaPost”
by John D. Hobby (extended by
the MetaPost Team)

Other indispensable source:

I “The METAFONTbook” by D. E. Knuth

MetaPost homepage:

I http://tug.org/metapost

Current development hosted at

I http://foundry.supelec.fr/projects/metapost/
Check for new releases, maybe even participate in
development. . .

Mailinglist:

I http://tug.org/mailman/listinfo/metapost

Introduction
MetaPost info where?

Another important information source:

I MetaPost macro package files.
The fundamental macros are here:
/usr/local/texlive/2008/texmf-dist/metapost/base/
plain.mp

MetaPost input files typically have extension .mp

Where is plain.mp?
Try: kpsewhich plain.mp

A real treasure trove for MetaPost fans:

I MetaFun package with documentation, from Hans Hagen.

/usr/local/texlive/2008/texmf-dist/metapost/base/plain.mp
/usr/local/texlive/2008/texmf-dist/metapost/base/plain.mp

Workflow
Tools for playing with MetaPost. . .

What you need:

I MetaPost engine “mpost”, helper programs, macro files. . .
These are core components of any current TEX distribution.
(e. g. TEX Live 2008).

I A text editor (vi, emacs, . . .).
MetaPost requires text input (no window interface).

I Some PostScript viewer, e. g. GhostScript (gs).

I Or some PDF viewer, e. g. xpdf, acroread.

I Pen and paper.

Workflow
Very first simple drawing example

Create file fig.mp with editor (% starts comment):

prologues := 3; % set up MetaPost for EPS generation
beginfig(1) % begin figure no. 1
draw (0,0)--(3,4); % actual drawing command(s)
endfig; % end figure
end % end of MetaPost run

No TEX backslash ‘\’. Commands are separated by semicolon ‘;’ !
Units: PostScript Points (1/72 in = 0.352777. . . mm)
Command line call:

mpost fig

And here is our first drawing, file fig.1:
We see: 2-dimensional Cartesian coordinate system (right, up).

Workflow
Very first simple drawing example

mpost produces selfstanding Encapsulated PostScript file fig.1:

%!PS-Adobe-3.0 EPSF-3.0
%%BoundingBox: -1 -1 4 5
%%HiResBoundingBox: -0.25 -0.25 3.25 4.25
%%Creator: MetaPost 1.000
%%CreationDate: 2007.07.17:0158
%%Pages: 1
%%BeginProlog
%%EndProlog
%%Page: 1 1
0 0 0 setrgbcolor 0 0.5 dtransform truncate idtransform
setlinewidth pop [] 0 setdash 1 setlinecap 1 setlinejoin
10 setmiterlimit

newpath 0 0 moveto
3 4 lineto stroke
showpage
%%EOF

Workflow
How to use MetaPost output in TEX workflow

Workflow with TEX/LATEX and dvips:

I mpost fig.mp → fig.1

I Include with \includegraphics{fig.1},
latex and dvips → EPS file

With pdfTEX/pdfLATEX:

I mpost fig.mp → fig.1

I Include with \includegraphics{fig.1},
pdflatex → PDF file
This converts the EPSF output from mpost directly into PDF,
using a parser from the ConTEXt package.

Workflow
How to use MetaPost output in TEX workflow

Other way with pdfTEX/pdfLATEX, via PDF file:

I mptopdf -raw fig.mp → fig-1.pdf
mptopdf gives selfstanding PDF output, versatile!

I Include with \includegraphics{fig-1.pdf},
pdflatex → PDF file

Yet another way via PDF file, using mpost with prologues := 3:

I mpost fig.mp → fig.1 (selfstanding EPS file!)

I epstopdf --outfile=fig-1.pdf --hires fig.1
→ fig-1.pdf
epstopdf uses GhostScript.

I Include with \includegraphics{fig-1.pdf},
pdflatex → PDF file

Workflow
Steps for graphics design with MetaPost

At the beginning often very helpful:

I Make sketch by hand (visualize problem).

I Mark key points in sketch.

Actual graphics programming and refinement:

I Write MetaPost program.

I Identify things that can be put into macros.

I Refine program using macros.

I If macros are used for several graphics, maybe consider
creation of a MetaPost macro package.

Basic concepts
Variable types

Back to our first drawing command: draw (0,0)--(3,4);
There are...

I two points (0,0) and (3,4) → pair (one of MetaPost’s
variable types)

I straight line inbetween → path (a MetaPost variable type)

I (implicit) pen for stroking → pen (a MetaPost variable type)

In fact we can write:

beginfig(2)
pair a,b; path p; pen mypen;
a = (0,0); b = (3,4);
p = a--b;
mypen = pencircle scaled 1;
pickup mypen; draw p;
endfig;

Basic concepts
Variable types

All MetaPost variable types:

Type Example

numeric (default, if not explicitly declared)
pair pair a; a := (2in,3mm);
boolean boolean v; v := false;
path path p; p := fullcircle scaled 5mm;
pen pen r; r := pencircle;
picture picture q; q := nullpicture;
transform transform t; t := identity rotated 20;
color color c; c := (0,0,1); (blue)
cmykcolor cmykcolor k; k := (1,0.8,0,0); (some blue)
string string s; s := "Hello";

Showstoppers for beginners
Watch out for these. . .

I The semicolon ;

I Assignments := vs. equations =

I Variable suffixes

I Pairs vs. the z macro

Showstoppers for beginners
The semicolon ;

In general: Each command must be ended by a semicolon.
But: MetaPost uses an interesting “expansion” concept.

beginfig(1)
pair a[]; a0=(0,0); a1=(1,0); a2=(1,1); a3=(0,1);
draw % no ; here!

for i=0 upto 3:
a[i]-- % no ; here!

endfor % no ; here!
cycle;
endfig;

This is in effect similar to following:

beginfig(1)
pair a[]; a0=(0,0); a1=(1,0); a2=(1,1); a3=(0,1);
draw a0--a1--a2--a3--cycle;
endfig;

Showstoppers for beginners
Assignments := vs. equations =

MetaPost has an integrated solver for linear equations and even
equation systems! So we have:

I Assignments, like a := 3;

I Equations, like 3 = 4b;

Know when to use := and when to use =.

Showstoppers for beginners
Assignments := vs. equations =

Assignment examples (variable on left side gets new value):

I a := 3; → a gets the value 3

I a := a + 1; → increment a

Forbidden (gives error), e. g.:

I 3 := a;

I (a,b) := (3,4);

But (a,b) = (3,4); is ok (two variables can’t be assigned
simultaneously).

There can’t go much wrong with exclusively using assingments,
but you would miss MetaPost’s powerful equation solver.

Showstoppers for beginners
Assignments := vs. equations =

Equation examples:

I a = b; b = 2-a; → a = 1, b = 1

I (2,a) = (b,3) → a = 3, b = 2

Inconsistent equations give errors, e. g.:

I a = b; a = b+1; → Error message:
! Inconsistent equation (off by 1)

Showstoppers for beginners
Variable suffixes

Variable names are made from “tags” (generic names) & suffixes.
Suffixes can be a mix of alpha/numeric/other tokens.
E. g., all these refer to the same variable:

I a3 a[3] a3. a[3.] a3.00 a03.00

Danger: The dot . is used in two cases:

I as decimal point in numeric suffix parts

I as separator between tags and alpha suffixes

This can lead to confusion:

I a[foo] refers to variable indexed by variable foo

I a.foo refers to variable with fixed suffix foo

I a.7 refers to variable with suffix 0.7

I a7 refers to variable with suffix 7

Showstoppers for beginners
Variable suffixes

To be safe:

I If using suffixes composed from dots and numbers, think in
real numbers.

I If in doubt, use square brackets [] around numeric suffixes.

I Learn by playing with suffixes. . .

Showstoppers for beginners
Pairs vs. the z macro

The pair variables z with suffix are special: They can only be
calculated by equations, not assigned a pair value.
E. g., this gives an error:

I z3 := (10mm,12mm); → Error:
! Improper ‘:=’ will be changed to ‘=’.

This is ok:

I z3 = (10mm,12mm);

Basic concepts
The special variables x, y, and z

The special pair variables z with suffix consist of x and y
coordinate variables with similar suffix. E. g.:

z1 = (1,0);
x2 = 3; 4 = y2;
draw z1--z2;

In MetaPost zk stands for (xk , yk), when k is any type of suffix.
This is very handy!

I Use z variables wherever possible.

Basic concepts
The special variables x, y, and z

How to access x- and y -parts from ordinary pair variables? By
xpart and ypart, e. g.:

pair a; a = (1,2);
x1 = 2 * xpart a;
y1 = 3 * ypart a;

Or, shorter:

pair a; a = (1,2);
z1 = (2xpart a, 3ypart a);

Basic concepts
Straight and curved paths

Straight and curved paths, extending over 2 or more points:

beginfig(3)
z0 = origin; % short form for (0,0)
z1 = (60,40); z2 = (40,90);
z3 = (10,70); z4 = (30,50);
pickup pencircle scaled 1mm;
draw z0; draw z1; draw z2;
draw z3; draw z4;
pickup defaultpen;
draw z0--z1--z2--z3--z4 withcolor blue;
draw z0..z1..z2..z3..z4 withcolor red;
draw z0..z1..z2..z3..z4..z0 withcolor green;
endfig;

Color works!

Basic concepts
Closed paths, filling

Paths are closed by cycle:

beginfig(4)
z0 = origin;
z1 = (60,40); z2 = (40,90);
z3 = (10,70); z4 = (30,50);
pickup pencircle scaled 1mm;
draw z0; draw z1;
draw z2; draw z3; draw z4;
pickup defaultpen;
fill z2--z3--z4--cycle withcolor blue;
draw z0..z1..z2..z3..z4..cycle withcolor red;
draw z0..z1..z2..z3..z4..z0 withcolor green;
endfig;

Basic concepts
Specifying path direction

Specifying path direction:

beginfig(5)
z0 = origin;
z2 = (40mm,0);
z1 = 0.5(z0+z2); % multiplication ‘*’ not required
pickup pencircle scaled 1mm;
draw z0; draw z1; draw z2;
pickup defaultpen;
draw z0..z1{dir -70}..z2 withcolor red;
draw z0..z1{dir 0}..z2 withcolor green;
draw z0..z1{dir 70}..{right}z2 withcolor blue;
endfig;

Basic concepts
Pre-defined vectors

Handy pre-defined vectors (macros):

origin (0,0)
right (1,0)
left (-1,0)
up (0,1)
down (0,-1)

Their definitions are in file plain.mp.

Practical MetaPost functions regarding directions:

I dir x is the unit vector with direction x (in degrees)

I angle(x , y) gives numeric angle of pair z

You will barely need sine and cosine (sind, cosd).

Basic concepts
Tension

Fine-tuning of curves in the middle by tension:

beginfig(6)
z0 = origin;
z3 = right*30mm; % same as (30mm,0)
x1 = 0.2[x0,x3]; % mediation ‘on the way between’
x2 = 0.8[x0,x3];
y1 = y2 = 0.3x3;
pickup pencircle scaled 1mm;
draw z0; draw z1;
draw z2; draw z3;
pickup defaultpen;
draw z0..z1.. tension 1 ..z2..z3;
draw z0..z1.. tension 1.2 ..z2..z3 withcolor red;
draw z0..z1.. tension 2 ..z2..z3 withcolor green;
draw z0..z1.. tension 5 ..z2..z3 withcolor blue;
endfig;

Basic concepts
Curl

Fine-tuning of curves in the end by curl

beginfig(7)
z0 = origin;
z3 = right*30mm;
x1 = 0.2[x0,x3];
x2 = 0.8[x0,x3];
y1 = y2 = 0.5x3;
pickup pencircle scaled 1mm;
draw z0; draw z1;
draw z2; draw z3;
pickup defaultpen;
draw z0{curl 0} ..z1..z2..{curl 0} z3 withcolor red;
draw z0{curl 0.5}..z1..z2..{curl 0.5}z3 withcolor green;
draw z0{curl 1} ..z1..z2..{curl 1} z3;
draw z0{curl 10} ..z1..z2..{curl 10} z3 withcolor blue;
endfig;

Basic concepts
Bézier curves

Underlying {dir x}, tension, {curl x}: Bézier Cubic Curves
2 control points for each point: precontrol, postcontrol
Curve may be also specified by curve points and control points:

beginfig(8)
z0 = origin;
z3 = right*30mm;
z1 = z0 + 20mm*dir 60;
z2 = z3 + 20mm*dir 80;
pickup pencircle scaled 1mm;
draw z0; draw z1; draw z2; draw z3;
pickup defaultpen;
drawarrow z0--z1 withcolor red;
drawarrow z2--z3 withcolor blue;
draw z0 .. controls z1 and z2 .. z3;
endfig;

Basic concepts
Connecting paths by &

Paths can be connected, but only if they ‘touch’ (share a common
endpoint):

beginfig(9)
path p,q,r;
z0 = origin;
z1 = right*30mm;
z2 = z1 + up*20mm;
pickup pencircle scaled 1mm;
draw z0; draw z1; draw z2;
pickup defaultpen;
p = z0--z1;
q = z1..z2;
r = p & q & cycle;
draw r;
endfig;

Basic concepts
Predefined paths

Predefined standard paths (macros, see plain.mp): quartercircle,
halfcircle, fullcircle, unitsquare

beginfig(10)
pickup pencircle scaled 1mm;
draw origin;
pickup defaultpen;
draw fullcircle scaled 30mm

withcolor red;
draw halfcircle xscaled 30mm
yscaled 40mm withcolor blue;

draw unitsquare scaled 15mm;
endfig;

Paths can be transformed, e. g. scaled, rotated. . .

Basic concepts
Length of a path

Paths have a “length” and can be accessed parametrically:

beginfig(11)
path p;
draw origin
withpen pencircle scaled 1mm;

p = halfcircle scaled 30mm;
drawarrow p;
draw origin--point 0 of p;
draw origin--point 2 of p withcolor red;
draw origin--point 3.5 of p withcolor green;
draw origin--point infinity of p withcolor blue;
endfig;

A halfcircle is made from 4 Bézier segments.

Dont mix with arclength; this gives the geometerical path length.

Basic concepts
Subpaths

Subpaths can be cut out from paths, given start and end
parameters:

beginfig(12)
path p,q;
draw origin
withpen pencircle scaled 1mm;

p = halfcircle scaled 30mm;
pickup defaultpen;
drawarrow p;
q = subpath(1,3) of p;
draw origin--point 0 of q withcolor green;
draw origin--point infinity of q withcolor blue;
draw q withcolor red;
endfig;

Basic concepts
Intersections between paths

Intersections between paths can be found.
intersectiontimes gives the parametric locations on both paths:

beginfig(13)
path p,q;
draw origin

withpen pencircle scaled 1mm;
p = halfcircle scaled 30mm;
q = right*5mm--dir45*20mm;
drawarrow p; draw q;
z1 = p intersectiontimes q;
draw subpath (0, x1) of p withcolor red;
draw subpath (0, y1) of q withcolor blue;
endfig;

We get z1=(-1,-1) if there is no intersection.
There is also intersectionpoint, giving the point of intersection.

Basic concepts
for-loops

MetaPost loops: E. g. running over numeric range

beginfig(14)
for i=0 upto 100:
fill unitsquare
scaled ((100-i)*0.1mm)
rotated 31i
withcolor (0.01i)[red,blue];

endfor;
endfig;

Expression after scaled needs parenthesis.
Expression before [red,blue] needs parenthesis.
31i is ok, else it must be (31*i)

Basic concepts
Expansion of for-loops

A glimpse on expansion. . .

beginfig(15)
pair a;
a = right*15mm;
draw a
for i=30 step 30 until 3600:
.. a rotated i
scaled ((3600-i)/3600)

endfor;
endfig;

Points can be transformed like paths.
for used with step.
No semicolon inside for-loop here!

Basic concepts
Hiding stuff

Calculate and draw stuff without affecting main path:

beginfig(16)
pair a; a = right*15mm;
draw a
for i=30 step 30 until 3420:
hide(a := 0.97a;
draw a rotated i
withpen pencircle
scaled 1mm withcolor red)

.. a rotated i
endfor .. cycle;
endfig;

No semicolon after hide(), after rotated i, and after endfor!
And mind the :=

Basic concepts
Anonymous variables, whatever

Anonymous variables whatever to find point on a line:

beginfig(18)
draw origin withpen pencircle scaled 1mm;
z1 = down * 10mm; z2 = right * 5mm;
z3 = (30mm,15mm); z4 = (45mm,10mm);
z5 = whatever[z1,z2]

= whatever[z3,z4];
drawarrow z1--z2;
drawarrow z3--z4;
draw z2--z5 withcolor red;
draw z3--z5 withcolor blue;
endfig;

Similar to writing e. g.: z5 = n[z1,z2] = m[z3,z4];

BTW, intersectionpoint won’t work here (no intersection)!

Macros
Simple macros

Simplify expressions for repeated use or typical cases, e. g.:

for i=0 upto 100: endfor

. . . contains a simple parameterless macro:

def upto = step 1 until enddef;

So for i=0 upto 100: endfor
is same as: for i=0 step 1 until 100: endfor

Other example:

def -- = {curl 1}..{curl 1} enddef;

Check out file plain.mp for more examples.

Macros
Simple macros with parameters

Simple macros with parameters

beginfig(19)
def sides(expr a,b) =
point 0 of a -- b -- point infinity of a
enddef;

path p;
p = origin--(30mm,10mm);
z1 = (20mm,20mm);
draw p;
draw z1 withpen pencircle scaled 1mm;
draw sides(p,z1) withcolor blue;
endfig;

Macros
vardef

Vardef macros allow to do calculations and expand only to the
result. E. g., the perpendicular through a point onto a given line.

beginfig(20)
vardef perpendicular(expr a,b,c) =
pair p;
p = whatever[a,b] = c + whatever*((b-a) rotated 90);
p -- c
enddef;

path p;
z1 = origin;
z2 = (40mm,5mm);
z3 = (10mm,20mm);
draw z1--z2 withcolor blue;
draw z3 withpen pencircle scaled 1mm;
draw perpendicular(z1,z2,z3); endfig;

Macros
Macros with Suffixes

vardef setgon@#(expr c) =
for i := 2 upto (c - 1):
z@#[i]-z@#[i-1] = (z@#[i-1]-z@#[i-2]) rotated (360/c);

endfor; ngon_@#=c;
enddef;
vardef gon@# =
for i=0 upto ngon_@#-1: z@#[i] -- endfor cycle

enddef;

beginfig(21)
z.a0=z.b0=origin; z.a1=8mm*right;
setgon.a(6); setgon.b(7);
z.b3=z.a3;
draw z.a0 withpen pencircle scaled 1mm;
draw gon.a withcolor blue;
draw gon.b withcolor red; endfig;

Text
PostScript text

PostScript text (just simple text, fast)
A new data type: “string”

beginfig(22)
z1 = (5mm,5mm);
drawarrow origin--z1;

Hello World!Hello World!

He
llo

 Sa
n D

ieg
o!

label("Hello World!", z1) withcolor blue;
label.urt("Hello World!", z1) withcolor red;
draw thelabel.rt("Hello" & " " & "San Diego!", origin)

xscaled 0.7
rotated 60 shifted 2z1 withcolor green;

endfig;

See string concatenation by use of &.
thelabel produces a “picture”, yet another data type.

Text
PostScript text

Another example of PostScript text. . .

beginfig(23)
z1 = right*28mm;
z2 = right*30mm;
z3 = right*33mm;
draw origin;
for i=0 step 10 until 350:
label(decimal(i),z3 rotated i);
draw (z1--z2) rotated i;

0

10

20
30

40
50

60
708090100110

120
130

140
150

160

170

180

190

200
210

220
230

240
250260270280290

300
310

320
330

340

350

endfor;
endfig;

decimal converts numeric type into string type.

Text
PostScript text

Yet another example of PostScript text:

beginfig(24)
z1=right*28mm; z2=right*30mm;
draw origin;
for i=0 step 10 until 350:
if (i < 100) or (i > 270):
label.rt(decimal(i),origin)

shifted z2 rotated i
withcolor blue;

else:

0

10
20

30
40

50

60

708090

100110120130140
150

160
170

180

190

200

210

22
0

23
0

24
0

25
0

26
0

27
0 280

290
300

310

320

330

340

350

label.lft(decimal(i),origin)
rotated 180 shifted z2 rotated i withcolor red;

fi;
draw (z1--z2) rotated i;

endfor;
endfig;

Text
TEX text

Text between btex and etex is typeset by the TEX engine, and
converted into a picture.

beginfig(25)
picture p;
z1 = (10mm,10mm);
drawarrow origin--z1;
label.ulft(btex Text etex, z1)

withcolor blue;
p := btex \sqrt{LC} etex;
label.rt(p, origin)
rotated angle z1 shifted z1;

endfig;

Text√ LC

Slow, but with all typographic capabilities of TEX.

Text
TEX.mp macro file

Dynamic TEX text requires to write string to temporary file
(mptextmp.mp) and re-scan. Needs TEX.mp macro file. This is
very slow, but most versatile.

input TEX; % loading macros

beginfig(26)
z1 = right*28mm;
draw origin;

for i=0 step 10 until 350:

0◦
10◦
20
◦

30
◦40

◦50
◦60

◦70
◦

80
◦

90
◦

10
0◦

11
0◦

12
0◦

13
0◦

14
0◦

150◦

160◦

170◦
180◦
190◦
200

◦ 210
◦ 220

◦ 230
◦

240
◦

250
◦

260
◦

270
◦

280 ◦
290 ◦

300 ◦
310 ◦

320 ◦

330 ◦

340 ◦

350◦

label.rt(TEX("$" & decimal(i) & "^\circ$"),origin)
shifted z1 rotated i;

endfor;
endfig;

Examples
Smith-Chart diagram

0 0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

3.
0

4.
0

5.
0

10 20 50

0.1
0.1

0.2
0.2

0.3
0.3

0.4
0.4

0.5
0.5

0.
6

0.
6

0.
7

0.
7

0.
8

0.
8

0.
9

0.
9

1.
0

1.
0

1.
2

1.
2

1.
4

1.
4

1.
6

1.
6

1.
8

1.
8

2.0
2.0

3.0
3.0

4.0
4.0

5.0
5.0

10
10

20
20

50
50

0.2
0.2

0.4
0.4

0.6
0.6

0.8
0.8

1.0
1.0

0.2
0.2

0.4
0.4

0.6
0.6

0.8
0.8

1.0
1.0

0
10

20

30

40

50

60

70
8090100

110

120

130

14
0

15
0

16
0

17
0

18
0

-10
-20

-30

-40

-50

-60

-70
-80-90-100

-110

-120

-130

-1
40

-1
50

-1
60

-1
70

0 0

0.
01

0.
01

0.
02

0.
02

0.
03

0.
03

0.
04

0.
04

0.
05

0.
05

0.0
6

0.0
6

0.07
0.07

0.08
0.08

0.09
0.09

0.10

0.10

0.11

0.11

0.12

0.12

0.13

0.13
0.14

0.14
0.15

0.15
0.16

0.16
0.17

0.17
0.18

0.18

0.19
0.19

0.20

0.20

0.21

0.21

0.22

0.22

0.23

0.23

0.24

0.24

0.25

0.25

0.26

0.26

0.27

0.27
0.28

0.28
0.29

0.29
0.30

0.30
0.31

0.31

0.32

0.32

0.33

0.33

0.34

0.34

0.35

0.35

0.36

0.36

0.37

0.37

0.38

0.38

0.39

0.39

0.40

0.40
0.41

0.41
0.42

0.42
0.43

0.43

0.4
4

0.4
4

0.
45

0.
45

0.
46

0.
46

0.
47

0.
47

0.
48

0.
48

0.
49

0.
49

Examples
Printed circuit boards for ion optics (CIDA by vH&S)

RFB1A/B RFB2A/B
RFB3A/B

Examples
Logarithmic spirals (dust trajectory sensor)

76 mm

221 mm

Examples
High-voltage cascade layout

Examples
Potential plot with scatter ions (uses boxes.mp)

0 kV-1 kV-2 kV-3 kV-4 kV-5 kV-6 kV

TGEL EL2

TOF

RTG

RFG

PA DTI DTO
AN

LDT

Examples
Raytracing of ellipsoid mirror

M
5,

12
 tie

f (
4x

)
M

10
, 1

0 t
ief

 + D
urc

hg
an

g D
 = 8

(2x
)

35
60

35

48.74
wradius = 1 mm

40
52

57

21
53

65
70

Examples
NACA wing design for RC plane model (Jörg Henkel)

27.5

4 83.33 220 250

8 0.75

36 deg

4

5

6

2324

3435

36
37

38

51

1 2 3131517

30

34r35r

36r
37r

41 42
44

50

Examples
Tiling (‘Arabesque’), after Folke Hanfeld

