
Putting the Cork
back in the bottle

Improving Unicode
support in TEX

Mojca Miklavec & Arthur Reutenauer

Genesis

As a part of its Summer of Code programs, Google sponsors us to work on
projects related to TEX.

I chose to work on “making TEX more Unicode-compliant”.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

The Name of the Game
Genesis

Patterns

Intermission

More Unicode

Thanks

Close

The Name of the Game

What is Unicode?

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

The Name of the Game

What is Unicode?

A universal character set, suitable for representing any writing system.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

The Name of the Game

What is Unicode?

A universal character set, suitable for representing any writing system.

What is TEX?

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

The Name of the Game

What is Unicode?

A universal character set, suitable for representing any writing system.

What is TEX?

'You kidding me?

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

The Name of the Game

What is Unicode?

A universal character set, suitable for representing any writing system.

What is TEX?

'You kidding me?

What does it mean for a TEX-based system to be Unicode-compliant?

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

The Name of the Game

What is Unicode?

A universal character set, suitable for representing any writing system.

What is TEX?

'You kidding me?

What does it mean for a TEX-based system to be Unicode-compliant?

Can you repeat the question?

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

A First Step

Supporting Unicode implies to support – at least – UTF-8 encoding. All
of the TEX macro packages can accomodate it, but until very recent times,
some parts of the core support files ignored it completely, in particular,
hyphenation patterns. They used various “legacy” encodings known to TEX.

This was a problem when X ETEX was integrated in TEX Live in 2007.

Jonathan Kew then devised a way to convert the patterns to UTF-8 on the
fly, if needed. He wrapped them in files called xu-<hyphen>.tex (pro-
nounced “zoo hyphen”). These detect if they are running X ETEX or some
other TEX engine, and convert the patterns to UTF-8 in the former case:
you make characters active, and define them to yield the corresponding
UTF-8 byte sequence.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Patterns

For TEX Live 2008 we wanted to address the problem the other way round:
the input files should be in UTF-8, and we should convert them to TEX's
font encodings when using 8-bit engines.

We also wanted to make a clear distinction between the patterns and the
TEX support code: \catcode's, \lccode's (and other things you don't want to hear about).

Finally, we wished to adopt a clean naming scheme for the languages at
stake, and we chose IETF language tags for that, a.k.a. RFC 4646. It was
the only standard we found that could name all the language variants we
needed to name. ISO codes simply weren't enough.

The next two slides give an overview of this strategy.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Loading the patterns

The top-level file is called loadhyph-<language code>.tex, like
here for Slovenian:

% Test whether we received one or two arguments

\def\testengine#1#2!{\def\secondarg{#2}}

% That's Tau (as in Taco or ΤΕΧ, Tau-Epsilon-Chi),
% a 2-byte UTF-8 character

\testengine Τ!\relax

% Unicode-aware engines (such as XeTeX or LuaTeX)
% only see a single (2-byte) argument

\ifx\secondarg\empty
\message{UTF-8 Slovenian Hyphenation Patterns}

\else
\message{EC Slovenian Hyphenation Patterns}
\input conv-utf8-ec.tex

\fi
\input hyph-sl.tex

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Converting the patterns

The converter files are called conv-utf8-.tex.

Extract of conv-utf8-ec.tex:

\catcode"C4=\active
\catcode"C5=\active

\def^^c4#1{%
	\ifx#1^^8d^^a3\else % č - U+010D
\fi}

\def^^c5#1{%
	\ifx#1^^a1^^b2\else % š - U+0161
	\ifx#1^^be^^ba\else % ž - U+017E
\fi\fi}

%
% ensure all the chars above have valid lccode's
%

\lccode"A3="A3 % č - U+010D
\lccode"B2="B2 % š - U+0161
\lccode"BA="BA % ž - U+017E

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Taming the patterns

In many cases, things don't work as smoothly as they could be expected to.

Some languages use patterns that try to accomodate T1 and OT1 in the
same file. This happens for German, French, Danish, Latin.

Some files can be customized to load completely different pattern sets (Rus-
sian, Ukrainian).

Sometimes, Unicode is inherently bad at representing the language at hand
(Ancient / Polytonic Greek).

Sometimes Babel isn't on our side (Serbian).

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Breeding the patterns

The “new” patterns have been available for a few weeks on CTAN under
the name hyph-utf8, and have been imported into TEX Live for inclusion
in the 2008 DVD. They are the basis for language support in plain TEX and
LATEX through Babel, and have been integrated in the ConTEXt multilingual
infracstructure.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Intermission

What we have learned in the process:

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Do TEX and Unicode belong together?
Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Do TEX and Unicode belong together?

All the data is easy to represent in Unicode.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Do TEX and Unicode belong together?

All the data is easy to represent in Unicode.

The real problem was to integrate the patterns in the general TEX land-
scape,and to preserve Holy Backward Compatibility.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

How many languages?
42. 49.

ar Arabic
fa Farsi
eu Basque
bg Bulgarian
cop Coptic
hr Croatian
cs Czech
da Danish
nl Dutch
eo Esperanto
et Estonian
fi Finnish
fr French
de-1901 German, “old” spelling
de-1996 German, “new” spelling
el-monoton Modern Greek, monotonic spelling
el-polyton Modern Greek, polytonic spelling
grc Ancient Greek
grc-x-ibycus Ancient Greek in Ibycus encoding
hu Hungarian
is Icelandic
id Indonesian
ia Interlingua
ga Irish
it Italian
la Latin
mn-cyrl Mongolian, Cyrillic script
mn-cyrl-x-2a Mongolian, Cyrillic script (new patterns)
no Norwegian
nb Norwegian Bokmål
nn Norwegian Nynorsk
zh-latn Chinese Pinyin
pl Polish
pt Portuguese
ro Romanian
ru Russian
sr-latn Serbian in the Latin script
sr-cyrl Serbian in the Cyrillic script
sh-latn Serbo-Croatian in the Latin script
sh-cyrl Serbo-Croatian in the Cyrillic script
sl Slovene
es Spanish
sv Swedish
tr Turkish
en-gb British English
en-us American English
uk Ukrainian
hsb Upper Sorbian
cy Welsh

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

More Unicode

Actually, supportingUnicode implies muchmore than that: my original pro-
posal for Google Summer of Code included, in particular, to better handle
combining characters in X ETEX and luaTEX.

Combining characters are Unicode's diacritical marks: you put them after
a base character to add an accent to the latter.

For example, Unicode character U+017E LATIN SMALL LETTER Z WITH
CARON (ž) can also be represented as the sequences of two characters
U+007A LATIN SMALL LETTER Z (z) followed by U+030C COMBINING
CARON (̌).

Unicode specifies algorithms, known as normalization, to transform char-
acter sequences in fully decomposed or fully composed form.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Handling normalization natively
Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Handling normalization natively

X ETEX has been recently extended to support this at the engine level.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Handling normalization natively

X ETEX has been recently extended to support this at the engine level.

In luaTEX, it can be handled in the macro package thanks to appropriate
hooks,which it was ConTEXt Mark IV already does.

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

Handling normalization natively

X ETEX has been recently extended to support this at the engine level.

In luaTEX, it can be handled in the macro package thanks to appropriate
hooks,which it was ConTEXt Mark IV already does.

Problem solved!

Genesis

Patterns

Intermission

More Unicode

Thanks

Close

